
ADR Introduction

Johannes Willkomm

March 10, 2020

This is an introduction to the ADR system for Automatic Differentiation of
R code, a method to evaluate derivatives of numerical functions written in R.

Consider a function in R like myFunc:

myFunc <- function(x, y) { print('.'); 2 * x * y }

Run the function, first creating variables for the actual parameters and then
invoking the function with them:

a <- 12

b <- 4

z <- myFunc(a, b)

[1] "."

z

[1] 96

You can get the derivatives of z with respect to (w.r.t.) a and b with ADR
by loading the package “adr” and then using the function adrDiffFor:

library('adr')

J <- adrDiffFor(myFunc, arguments = list(a, b))

ADR: Post HTTR request for "r-ad-fm" to ’https://r-adr.de/adr/’,

45 chars

ADR: HTTR response after 0.658 s, 1139 chars

[1] "."

J[[1]]

[,1]

[1,] 8

1

This call returns the so called “Jacobian”, which is the matrix of the first
order derivatives of all values in the first argument a w.r.t. all return values, in
this case a single scalar. Note that df/dx=2*y is 8, so the result is correct. The
derivative is evaluated by the following steps behind the scenes:

1. The source code of myFunc is obtained and sent to the ADR server for
differentiation.

2. The differentiated R source code returned by the ADR server is parsed
and evaluated, which yields an “augmented function”

3. The augmented function is run to actually evaluate the derivatives

The first two steps are only done the first time you differentiate myFunc, the
results are cached.

Continuing the example, ADR also works for vector functions. This means
the R function code remains the same, we just change the argument, the point
where to evaluate myFunc:

a <- c(1, 3, 12)

J <- adrDiffFor(myFunc, arguments = list(a, b))

[1] "."

[1] "."

[1] "."

J[[1]]

[,1] [,2] [,3]

[1,] 8 0 0

[2,] 0 8 0

[3,] 0 0 8

The differentiated function code also remains the same. However, when the
definition of myFunc is changed, it obviously will have to be differentiated again:

myFunc <- function(x, y) { print('.'); 3 * x * y }
J <- adrDiffFor(myFunc, arguments = list(a, b))

ADR: Post HTTR request for "r-ad-fm" to ’https://r-adr.de/adr/’,

45 chars

ADR: HTTR response after 0.511 s, 1139 chars

[1] "."

[1] "."

[1] "."

J

2

$J

[,1] [,2] [,3]

[1,] 12 0 0

[2,] 0 12 0

[3,] 0 0 12

##

$f

[1] 12 36 144

Note how the message indicating the sending of the code to the ADR server
appeared again this time. You can look at the differentiated source code by
using the ADR function d:

d_myFunc <- d(myFunc, c(1))

d_myFunc

function (f.p1, f.p0)

{

x = f.p0[[1]]

y = f.p0[[2]]

dv_x = f.p1[[1]]

print(".")

d_f.ca2 = 3 * dv_x

f.ca2 = 3 * x

d_f.ca1 = d_f.ca2 * y

f.ca1 = f.ca2 * y

d_f.ridm16 <- d_f.ca1

f.ridm16 <- f.ca1

list(df = d_f.ridm16, f = f.ridm16)

}

The function d_myFunc can perfectly well be run manually, for example:

d_a <- array(c(1,0,0), c(3,1))

d_myFunc(list(d_a), list(a, b))

[1] "."

$df

[,1]

[1,] 12

[2,] 0

[3,] 0

##

$f

[1] 12 36 144

3

This yields the first column of J. The function adrDiffFor is basically just
a driver which runs a series of calls like the one above and arranges the results
in the Jacobian matrix. Finally, the argument seed can be set to a so called
“seed matrix”, for example:

S <- array(c(1,1,0, 0,0,1), c(3,2))

JtimesS <- adrDiffFor(myFunc, seed = S, arguments = list(a, b))

[1] "."

[1] "."

JtimesS[[1]]

[,1] [,2]

[1,] 12 0

[2,] 12 0

[3,] 0 12

The result JtimesS is the Jacobian multiplied by the seed matrix, as can
easily be checked:

J[[1]] %*% S

[,1] [,2]

[1,] 12 0

[2,] 12 0

[3,] 0 12

It can be much faster and efficient to to give S to adrDiffFor than to multi-
ply a-posteriorily. Coming up with and using a suitable seed matrix is possibly
the most important thing to consider when using ADR or automatic differen-
tiation in general. The time and memory needed to run adrDiffFor depends
linearly on the number of columns in S, the so called “number of directional
derivatives”. This is because adrDiffFor will have to run the differentiated
code once for each column in S, setting the derivative argument d_a to each
column in turn. In particular, a matrix-vector product of the Jacobian can be
obtained with a single run of the differentiated function.

The so-called vector mode is automatically activated when the number of
directional derivatives exceeds the value in option vectormode-switchover.
Then the differentiated function is run just once, but using the class advec to
propagate bundles of derivatives simultaneously. With option vectormode the
vectormode can be set manually.

S <- array(c(1,0,0, 0,1,0, 0,0,1), c(3,3))

options=adrOptions(vectormode=TRUE)

JtimesS <- adrDiffFor(myFunc, list(a, b), seed=S, options=options)

4

[1] "."

JtimesS[[1]]

[,1] [,2] [,3]

[1,] 12 0 0

[2,] 0 12 0

[3,] 0 0 12

The server URL is obtained from the function adrServerURL() which de-
faults to the environment variable ADR_SERVER, then to the option adrserver

and finally to the static value

[1] "https://r-adr.de/"

5

